Blog Topic: Exploring the Differences Between Dry Type and Oil Filled Transformers

Transformers are an essential component in the electrical distribution system, responsible for stepping up or stepping Down voltage Levels to ensure efficient Power Transmission. When it comes to transformers, there are two main types: dry type and oil-filled transformers. Each type has its own set of advantages and disadvantages, making it important for businesses to understand the differences between the two before making a decision on which type to use.

Dry type transformers, as the name suggests, do not use any liquid for cooling. Instead, they rely on air circulation to dissipate heat generated during operation. This makes them a popular choice for indoor applications where the use of oil may pose a Safety hazard. Dry type transformers are also more environmentally friendly as they do not contain any oil that could potentially leak and cause harm to the Environment.

alt-942

On the other hand, oil-filled transformers use oil as a coolant and insulating medium. The oil helps to dissipate heat more efficiently, allowing the transformer to operate at higher power levels without overheating. Oil-filled transformers are typically used in outdoor applications where the risk of fire is lower, and where the transformer needs to withstand harsh environmental conditions.

model Rated\\u00a0power\\u00a0\\uff08KVA\\uff09 Voltage\\u00a0combination\\uff08KV\\uff09 Off-load\\u00a0losses\\uff08W\\uff09 Load\\u00a0losses\\uff08W\\uff09 Off-load\\u00a0current\\u00a0\\uff08%\\uff09 Short-circuit\\u00a0impedance\\u00a0\\uff08%\\uff09
SC13-30 30 6,6.3,6.6,10,11/0.4 150 710 2.3 4.0
SC13-50 50 6,6.3,6.6,10,11/0.4 215 1000 2.2 4.0
SC13-80 80 6,6.3,6.6,10,11/0.4 295 1380 1.7 4.0
SC13-100 100 6,6.3,6.6,10,11/0.4 320 1570 1.7 4.0
SC13-125 125 6,6.3,6.6,10,11/0.4 375 1850 1.5 4.0
SCB13-160 160 6,6.3,6.6,10,11/0.4 430 2130 1.5 4.0
SCB13-200 200 6,6.3,6.6,10,11/0.4 495 2530 1.3 4.0
SCB13-250 250 6,6.3,6.6,10,11/0.4 575 2760 1.3 4.0
SCB13-315 315 6,6.3,6.6,10,11/0.4 705 3470 1.1 4.0
SCB13-400 400 6,6.3,6.6,10,11/0.4 785 3990 1.1 4.0
SCB13-500 500 6,6.3,6.6,10,11/0.4 930 4880 1.1 4.0
SCB13-630 630 6,6.3,6.6,10,11/0.4 1070 5880 0.9 4.0
SCB13-630 630 6,6.3,6.6,10,11/0.4 1040 5960 0.9 6.0
SCB13-800 800 6,6.3,6.6,10,11/0.4 1210 6960 0.9 6.0
SCB13-1000 1000 6,6.3,6.6,10,11/0.4 1410 8130 0.9 6.0
SCB13-1250 1250 6,6.3,6.6,10,11/0.4 1670 9690 0.9 6.0
SCB13-1600 1600 6,6.3,6.6,10,11/0.4 1960 11700 0.9 6.0
SCB13-2000 2000 6,6.3,6.6,10,11/0.4 2440 14400 0.7 6.0
SCB13-2500 2500 6,6.3,6.6,10,11/0.4 2880 17100 0.7 6.0

One of the main differences between dry type and oil-filled transformers is their cost. Dry type transformers are generally more expensive to purchase and install compared to oil-filled transformers. This is because dry type transformers require more insulation and cooling mechanisms to compensate for the lack of oil. However, in the long run, dry type transformers may be more cost-effective as they require less maintenance and have a longer lifespan compared to oil-filled transformers.

Another key difference between dry type and oil-filled transformers is their efficiency. Oil-filled transformers are known for their high efficiency levels, making them a popular choice for high-power applications where energy efficiency is crucial. Dry type transformers, on the other hand, may have lower efficiency levels due to the need for additional insulation and cooling mechanisms.

Dry transfo\\u00a0 Rated\\u00a0capacity\\u00a0\\uff08KVA\\uff09 Voltage\\u00a0combination\\uff08KV\\uff09 No-load\\u00a0losses\\uff08W\\uff09 Load\\u00a0losses\\uff08W\\uff09 No-load\\u00a0current\\u00a0\\uff08%\\uff09 Short-circuit\\u00a0voltage\\u00a0\\uff08%\\uff09
SC10-30 30 6,6.3,6.6,10,11/0.4 190 710 2.4 4.0
SC10-50 50 6,6.3,6.6,10,11/0.4 270 1000 2.4 4.0
SC10-80 80 6,6.3,6.6,10,11/0.4 370 1380 1.8 4.0
SC10-100 100 6,6.3,6.6,10,11/0.4 400 1570 1.8 4.0
SC10-125 125 6,6.3,6.6,10,11/0.4 470 1850 1.6 4.0
SCB10-160 160 6,6.3,6.6,10,11/0.4 550 2130 1.6 4.0
SCB10-200 200 6,6.3,6.6,10,11/0.4 630 2530 1.4 4.0
SCB10-250 250 6,6.3,6.6,10,11/0.4 720 2760 1.4 4.0
SCB10-315 315 6,6.3,6.6,10,11/0.4 880 3470 1.2 4.0
SCB10-400 400 6,6.3,6.6,10,11/0.4 980 3990 1.2 4.0
SCB10-500 500 6,6.3,6.6,10,11/0.4 1160 4880 1.2 4.0
SCB10-630 630 6,6.3,6.6,10,11/0.4 1350 5880 1.0 4.0
SCB10-630 630 6,6.3,6.6,10,11/0.4 1300 5960 1.0 6.0
SCB10-800 800 6,6.3,6.6,10,11/0.4 1520 6960 1.0 6.0
SCB10-1000 1000 6,6.3,6.6,10,11/0.4 1770 8130 1.0 6.0
SCB10-1250 1250 6,6.3,6.6,10,11/0.4 2090 9690 1.0 6.0
SCB10-1600 1600 6,6.3,6.6,10,11/0.4 2450 11730 1.0 6.0
SCB10-2000 2000 6,6.3,6.6,10,11/0.4 3050 14450 0.8 6.0
SCB10-2500 2500 6,6.3,6.6,10,11/0.4 3600 17170 0.8 6.0

In terms of maintenance, oil-filled transformers require regular monitoring and maintenance to ensure the oil is clean and free from contaminants. This can be a time-consuming and costly process, especially for large transformers. Dry type transformers, on the other hand, require less maintenance as they do not use oil as a coolant. However, regular inspections and cleaning of the windings are still necessary to ensure optimal performance.

When choosing between dry type and oil-filled transformers, businesses should consider their specific needs and requirements. Factors such as cost, efficiency, maintenance, and environmental considerations should all be taken into account before making a decision. Ultimately, both types of transformers have their own set of advantages and disadvantages, and the choice between the two will depend on the individual needs of the business.

alt-9412

In conclusion, understanding the differences between dry type and oil-filled transformers is essential for businesses looking to invest in a new transformer. By weighing the pros and cons of each type, businesses can make an informed decision that meets their specific needs and requirements. Whether it’s a dry type transformer for indoor applications or an oil-filled transformer for outdoor use, choosing the right transformer is crucial for ensuring reliable and efficient power distribution.